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Keywords: The enormous number of network packets transferred in modern networks together with the high speed of
Virtual networks transmissions hamper the implementation of successful IT security mechanisms. In addition, virtual networks
Anomaly detection create highly dynamic and flexible environments which differ widely from well-known infrastructures of the

Machine learning

) ° past decade. Network forensic investigation that aims at the detection of covert channels, malware usage
Virtual environment

or anomaly detection is faced with new problems and is thus a time-consuming, error-prone and complex
process. Machine learning provides advanced techniques to perform this work faster, more precise and,
simultaneously, with fewer errors. Depending on the learning technique, algorithms work nearly without any
interaction to detect relevant events in the transferred network packets. Current algorithms work well in static
environments, but the highly dynamic environments of virtual networks create additional events which might
confuse anomaly detection algorithms. This paper analyzes highly flexible networks and their inherent on-
demand changes like the migration of virtual machines, SDN-programmability or user customization and the
resulting effect on the detection rate of anomalies in the environment. Our research shows the need for adapted
pre-processing of the network data and improved cooperation between IT security and IT administration

departments.

1. Introduction systems. These systems create additional flexibility in the environment.
Not only the life cycle of containers or swarms have an impact on the
Nowadays IT environments are a key factor in our modern life. internal dynamic, even the migration of a VM increases this adaptabil-
Modern data centers form the basis for our everyday digital life. Digital ity. In addition, user customization for internal changes inside the VM
services play an important role, in the private life (i.e. as a backup and its assigned networks create extra benefits. But the connection of
for photos, videos and files or as a shared online calendar) as well as these systems with a hardware-based network hamper the necessary
in many professional areas such as the financial sector, development adaptability. Only with use of VNs the data center plays to its strength.
& research or the office environment. With the evolution of cloud These VNs work on an additional layer in the environment which led
computing, ubiquitous use of computers, digital services and resources to the designation of an underlay and an overlay network as shown in

become more and more usual in our everyday life, which has led to Fig. 1.

a demand for faster connections and higher data rates. To fulfill these
demands, modern data centers require a highly flexible infrastructure,
which is adaptable without any further administrative work. The in-
troduction of various virtualization layers like virtual machines (VM),
virtual networks (VN) and virtual storage provides such an on-demand
infrastructure. This evolution led to the implementation of advanced
techniques like container-based environments, which create a dynamic
infrastructure like the different cloud services Software-as-a-Service,
Platform-as-a-Service or Infrastructure-as-a-Service [1].

Cloud service providers (CSP) use the virtualization inside their data
centers to comply with the demands of their customers. Especially the
use of VMs or containers improves the on-demand provision of new

The overlay networks perform various tasks. On the one hand, a VM
needs access to the internet and maybe to different internal or external
networks. On the other hand, the same VM has to be separated from
VMs of other customers to ensure an isolated environment. Typically,
this separation is done with virtual networks, which run on top of the
hardware-based underlay network.

Protocols that create the overlay network are so-called virtual net-
work protocols, which are used for the interconnection of the different
VMs in modern infrastructures. With these protocols, VMs of one
customer are connected together in a logical subnet, which is separated
from other subnets of different customers. While the hardware-based
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Fig. 1. Underlay and overlay networks.

Outer Outer Inner
Eth P upp VXLAN Eth Payload
Flags VNI RSVD

Fig. 2. VXLAN header and encapsulation.

underlay network and its addressing scheme, routing rule-set or se-
curity features could be implemented in a static manner, the virtual
network provides the flexibility and dynamic needed to interconnect
the VMs. Various protocols exist to implement a VN, each of them with
a different focus. The first technique to implement a virtual subnet was
the use of Virtual LAN (VLAN) [2]. The increasing demand in a data
center led to the development of adapted protocols Generic Network
Virtualization Encapsulation (GENEVE) [3], Network Virtualization us-
ing Generic Routing Encapsulation (NVGRE) [4], Stateless Transport
Tunneling (STT) [5] and Virtual Extensible LAN (VXLAN) [6].

The easiest way to implement a virtual network is by using the well-
known VLAN protocol that is however limited to only 4096' subnets,
which is not sufficient in modern networks. The most notable protocol
to implement these virtual networks is VXLAN, which is similar to
the VLAN protocol, but expands its features and adds some new.
VXLAN increases the maximum number of subnets to 224 = 16,777,216
networks by using a 24 bit virtual network identifier (VNI). Fig. 2 shows
the VXLAN-header, its position in the entire frame and the use of UDP
as the encapsulating protocol.

Due to the evolution of these dynamic environments, the protec-
tion of the network and the internal services gains more and more
in importance. Therefore, the detection of attacks or the occurrence
of anomalies in the environment is a relevant part of the IT secu-
rity implementations. A modern network is target of various attacks,
either from inside or from outside attackers. The types of attacks
vary, from exploited misconfigurations like in 2018, when Amazon
S3 buckets with more than 70 million records were leaked due to
poor configuration [7], to ransomware attacks like 2019, when one
of the biggest US data center providers CyrusOne was attacked [8].
A virtual network facilitates new vulnerabilities on its own, therefore
various attacks against the virtual infrastructure exist. [9] presents
Network Harvester, an implementation of attacking the isolation of
network devices in SDN environments. They evaluated their attack with
common SDN controllers like ONOS and Floodlight. [10] categorized

1 VLAN headers use 12 bit VLAN IDs to implement up to 2'> = 4096 subnets.
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different attacks against SDN devices and network function virtual-
isation (NFV) and summarized them as related to Network function
virtualisation, virtual layer, orchestrator manager and virtualized infras-
tructure manager. [11] describes the implementation of covert channels
inside a virtual environment and analyzes the possibility of data hiding
in network protocols like VXLAN or GENEVE. These attacks show
the need for an effective protection of the environments. By using
different security mechanisms like firewalls or intrusion detection sys-
tems, providers try to increase their overall IT security and counter
these kinds of attacks. But the increasing number of network packets
transferred inside the environment in combination with the high speed
of connections as well as the huge amount of attacks make this task
complex and expensive.

Advanced techniques like machine learning (ML) try to support the
provider by the detection of anomalies in the network traffic which
might be an indicator for unknown attacks against their infrastructure.

ML and its impact on cyber security is a fast growing research area,
which results in the definition of different algorithms and an improved
analysis of unknown data. One of the most important parts for ML in
networks is the detection of anomalies, which [12] defines as

... the problem of finding patterns in data that do not
conform to expected behavior.

The detection of anomalies in the network is part of classification
problems [13]. This type of problem can be described by classifying
data points to given categories [14]. A wide-spread classification in
IT security is the detection of SPAM [15]; here an incoming e-mail is
checked against a set of features. To analyze an e-mail correctly, the
classifier has to be trained with benign and malicious data, hereby it
learns parameters which indicate SPAM mails.

Anomaly detection in networks tries to find changes concerning e.g.
the mix of packets in a network. This might be an indicator for the
beginning of an attack or a current data leakage [16]. The detection
of covert channels with the help of ML is a recent research area [17].
Modern malware uses covert channels to transfer their payload or to
exfiltrate sensitive data [18]. The detection of such attacks requires
good knowledge of the traffic which is typical in this environment. An
outlier of this known traffic might be an indicator for a security issue,
therefore it calls for additional investigation of such traffic.

Because of this, machine learning algorithms heavily depend on an
environment with some mostly static parameters. Common classifiers
use network flows or parts of protocol headers to create a benchmark
data-set, which is used to train the algorithm. If a certain level of
deviations is reached, e.g. if a threshold is exceeded, the classifier
will detect an anomaly and start a pre-defined process like logging or
alerting.

Unfortunately, changes are inherent in virtual networks, so a ma-
chine learning algorithm will produce various false-positive messages,
which therefore demand a reconfiguration of the training sets. This
is a common task in company networks and not a new problem
in IT security [19]. But changes in virtual networks occur much
more frequently. Additionally, these changes are mostly unpredictable,
because both administrator and customer are able to adapt their part of
the network. The administrator might change some parameters of the
virtual environment like the deployed protocol or only some protocol
fields. The customer might change the internal IP addresses used in the
assigned logical subnet. Because of the separation of the layers, both
changes should not have any impact to the other part of the network.

Hence, we investigate the impact of virtual networks on the detec-
tion capabilities of machine learning algorithms for malware detection
by finding network anomalies. We do this by creating a cloud com-
puting environment based on OpenStack with various virtual network
protocols that transfer specific information in this test environment. We
capture and analyze the traffic with different ML algorithms focusing
on anomaly detection.

Our contributions can be summarized as follows:
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We point out challenges for machine learning algorithms when
used for forensic anomaly detection in virtual networks.

We identify changes in virtual overlay and underlay networks that
may point to anomalies like malware.

We perform simulations of virtual networks to create data sets of
captured network packets with above changes that can be used
to parameterize, train and evaluate forensic machine learning
algorithms for virtual networks.

We evaluate forensic machine learning in virtual networks with
above data sets.

The remainder of this paper is structured as follows. In Section 2 we
summarize related work from virtual network forensics and machine
learning for anomaly detection. Section 3 describes the methodology
for data collection and analysis, together with relevant changes in
virtual networks that define the data to collect. The implementation
of the deployed ML algorithm is discussed in Section 4. In Section 5 we
evaluate the different situations and their impact on anomaly detection
based on IsolationForest and LocalOutlierFactor. Section 6 concludes
this paper and gives an outlook to our future research.

2. Related work

Virtual networks and modern data centers necessitate a change
of the well-known methods of digital investigation in hardware-based
networks as discussed in [20,21]. [22] describes the arising problems
of network forensic investigation in virtual networks. [23] defines an
SDN model usable to perform secure network forensic investigation
in nowadays data centers, especially when they are distributed over
different locations. The need for a special process to implement valid
investigation in modern environments is discussed in [24]. A further
discussion about the problems of packet captures for law enforcement
in modern data centers is discussed in [25]. An important task in a data
center’s security strategy is the detection of abnormal behavior inside
the transmitted network packets [26]. So, the anomaly detection is a
part of forensic investigation, but in some cases the results of such a
monitoring has to be accessible much faster. [27] discusses the use of
machine learning aspects as an implementation of automated network
forensics. [28] discuss problems and countermeasures of anomaly de-
tection in big data networks. The most notable protocol in modern
data centers apart from ethernet is the Internet Protocol. [29] analyzes
various sources of network data like routing or management protocols
and special network probes.

The research of anomaly detection in virtual networks is thin. [30]
describes the detection of distributed denial of service (DDoS) attacks in
virtual networks with the help of the network analyzer Bro. The analysis
results are used to configure parts of the virtual network with the help
of OpenFlow. Anomaly detection in modern networks is discussed in
various papers. [31] describes the detection of anomalies in a small
test environment based on pre-defined network packets and measures
the impact of different changes in the network. [32] proposes the use
of IP-flow records for anomaly detection with Support Vector Machines
(SVM), which improves the performance in high speed networks. The
detection of anomalies or outliers is a crucial task in modern networks,
and as an internal component a detection system might be faced with
adversarial attacks. [33] presents a survey of adversarial attacks against
intrusion detection systems. The authors define six different goals,
namely evasion, poisoning, over-stimulation, denial of service, response
hijacking and reverse engineering. [34] defines evasion and poisoning as
the most relevant attack models against machine learning algorithms.

In contrast to the aforementioned research, our present research
tries to identify changes in virtual networks originating from anomalies
such as malware in a systematic manner, and to create data sets of
captured networks packets in virtual networks. We use those data sets
to evaluate forensic machine learning in virtual networks.
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3. Anomaly detection in virtual networks

Anomaly detection is a critical task in modern networks, either
to detect advanced attacks like covert channels or DDoS. Occurring
anomalies in the network might be an indicator for malicious behavior,
so using ML to detect such behavior is a common technique. Whereas
anomaly detection in traditional networks is well researched, detection
algorithms are faced with new challenges in virtual networks.

For a structured procedure, we first introduce the process model
that we follow. Our research focuses on the impact of virtualization in
a network and the inherent changes on ML algorithms that are used to
detect anomalies in the network. A virtual environment provides a huge
flexibility on different layers. Both overlay and underlay might create
relevant changes in the network infrastructure, which therefore leads
to a measurable impact for anomaly detection. Hence, we also analyze
possible changes in overlay and underlay networks, which allows to
define the data collection in Section 4.

3.1. Process model

A successful implementation of ML for network forensic investiga-
tion like anomaly detection, malware analysis [35] or event reconstruc-
tion [36] depends on various parameters like valid packet captures,
correct data extraction and the use of a suitable ML algorithm. An
established method in digital investigationo ensure the correctness
of a digital investigation is the use of so-called process models or
frameworks which define the necessary steps, mostly separated in
different phases. Whereas different frameworks for anomaly detection
in networks exist [37,38], there is no specific framework with a special
view regarding the dynamic of a virtual network. As shown in [39],
digital investigations in a virtual network require adapted frameworks
which are able to manage the flexibility of the environment.

We propose the use of the process model defined in [40]. The
authors define six steps to implement ML for network analysis:

* Problem formulation

In this phase the investigator defines various parameters of the
analysis. ML algorithms are often time-consuming, so a detailed
definition of necessary input data and ML categories is quite
relevant for the subsequent steps.

Data collection

In this phase the relevant packets are captured. In traditional
networks, this step is easy to implement [20,22], but virtual
networks increase the complexity of network packet capture pro-
cesses [41].

Data analysis

This phase comprises all necessary steps to transform the captured
packets into a usable format for the subsequent steps. The cap-
tured data might be stored in raw, pcap or pcap-ng-formats? and
transformed into formats like Netflow, sFlow, csv, json or other
user-defined structures. Typically, these techniques do not store
the entire network packet but various header information from
different layers of the OSI model. Whereas Netflow and sFlow
use layer 3 and layer 4 protocols, the other formats might extract
information from all other layers. The definition of the necessary
data depends on the intended analysis.

Model construction

The construction involves the training, testing and tuning of the
learning model.

Model validation

In this phase the model is validated to ensure its quality. If errors
occur or improvements are needed, all prior tasks are involved to
eradicate these issues.

2 In addition to these formats, various vendor-dependent file formats exist.
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» Deployment and inference
This phase comprises all relevant steps to implement the ML
process in the operational environment with a focus on resource
usage, accuracy and performance.

Problem formulation is covered in the next subsections. Data col-
lection is described in detail in Section 4. Model construction and
validation is done in Section 5. We did not focus on the last phase
of deployment and inference in depth, because we limit our approach
to the analysis of different changes without an optimization of the
deployed algorithm or the selection of the best algorithms.

3.2. Changes in overlay network

The part of the overlay protocol is defined by the internal networks,
which are under administration of the user. By this the customer is able
to change different settings of a VM or the assigned network on his own,
which might result in relevant changes.

+ Internal IP addressing

Typically, the internal network uses private IP addresses from a
predefined subnet as described in [42]. The user of this network is
able to change this internal addressing scheme without involving
the CSP or any administrator of the cloud environment.

VM Life Cycle

A VM runs inside the virtual environment and is under control
of the customer. So, the customer is able to start and stop virtual
machines on his own, which leads to an unpredictable behavior
affecting every IT security feature focused on this part of the
network.

Addition or Deletion of VMs

A customer is able to start new VMs within seconds and to connect
them to the internal network. Typically, this task is initiated by
using the web interface of the cloud environment. If a new VM is
started, the internal network changes.

3.3. Changes in underlay network

A cloud service provider (CSP) is free to change the underlying net-
work whenever needed, which might lead to a fully different network
behavior without affecting the virtual network of the users.

» Overlay protocol

Overlay protocols like VXLAN, GENEVE or STT are used to create
the different isolated and separated networks of the different cus-
tomers. If the CSP changes the separation protocol of the internal
virtual networks from VXLAN to GENEVE, this only needs a quick
change of the internal transfer mechanism. A possible change is
the use of an improved protocol like STT, which implements the
use of special features of the network interface card. By this the
resource usage of the CPU is reduced, which improves the overall
performance of the network.

Migration

A huge benefit of virtual environments is the migration of VMs.
This can be done for availability reasons, e.g. when the hosting
server has a critical problem which requires a reboot, or for
providing an improved environment, e.g. when different VMs on
a single host demand for a higher CPU usage. If a VM is migrated,
the system is moved from one hosting server to another. In case of
such a migration, some parameters of the VM (like the IP address
or MAC address) do not change, but the underlying structure of
the network needs some adaptations to create this flexibility. This
might include the creation of a separate tunnel depending on the
protocol as well as the deletion of existing ones.
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OpenStack

o ®

Fig. 3. Logical OpenStack installation. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

» Programmability of the network

The use of SDN inside a virtual environment provides additional
flexibility in the infrastructure. By implementing new or adapted
features, the network is able to change its behavior on demand.
SDN decouples the traffic management from the traffic forward-
ing. An SDN controller manages the flows of network traffic inside
the environment by communicating with connected devices via
the so-called southbound-API. The most notable protocol for this
communication is OpenFlow. By adding or deleting OpenFlow
rules, a packet flow inside the network is adjusted, which pro-
vides a huge flexibility and dynamic in the environment. This
programmability is used to implement different applications like
network management [43], security [44], quality of service [45]
or network forensic [39].

4. Implementation

This section describes the collection of relevant network data, the
definition of our packet based feature set and the algorithms used for
anomaly detection.

4.1. Data collection

In [31] we analyzed the impact of virtual networks when using
machine learning for anomaly detection inside a simple network in-
frastructure. To measure the impact in a more realistic scenario, we
extend the original test environment and created a cloud environment
based on OpenStack with two user networks as shown in Fig. 3. This
environment provides all relevant aspects which facilitate the analysis
of the aforementioned occurrences. The virtual environment is installed
on three Dell Poweredge R6415, each with 32GB RAM and three
network interface cards (NIC). One NIC of a server is dedicated to the
tenant network, the connection between the servers is done with a Cisco
WS-C2960X-24PS-L gigabit ethernet switch. We installed Ubuntu 18.04
LTS as the underlying operating system with OpenStack release Train.
As the SDN controller, we use OpenDaylight. The deployed protocols
VXLAN, GRE and GENEVE are the relevant ones of the most notable
cloud environment solution OpenStack [46].

In the green network in Fig. 3, we installed a webserver based on
nginx as the frontend and a MySql database as the backend. The web-
server hosts two different files, a single html document and a php script
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that collects some information from the mysql database running on the
different system. To increase the number of packets in the network,
we added a dedicated VM providing the php-fpm functionality. By this
setup, a single request for the php script results in the communication
with the php-fpm service, and after that with the database.

The blue network contains a single VM that repeatedly, with ran-
dom intervals in-between, requests an internet site from the top 500
websites® via curl. This produces common network traffic, which is
normal in cloud environments.

All administrative work is done via the web interface of the Open-
Stack installation. We focus on the so-called tenant networks which
define the networks for the VMs and the customers. All other networks
like backup or management are not in the scope of this paper. This
infrastructure provides a low-level environment, which helps to focus
on the impact of the changes. We assume that an implementation of
networks with more VMs or connections would not result in different
detection rates, but hamper the analysis due the existence of more
network packets stored during the collection process.

At first, we validated the usability of the environment by capturing
the network data on two different layers of the network. A capture
process in the overlay network results in a packet capture without
any overlay information, whereas a packet capture performed in the
underlay network gathers all involved protocols, which includes the
overlay protocol.

Fig. 4 shows a packet capture without any encapsulation informa-
tion. In this case there are information of layer 2 (starting with Ethernet
1), layer 3 (starting with Internet Protocol Version 4 (IPv4)) and the
transmitted data (in this case the Internet Control Message Protocol)
available. Fig. 5 displays a packet capture of the same network packet,
but this time encapsulated with VXLAN, which is used by UDP. By this,
there are two ethernet headers and two IPv4 headers in one captured
packet.

Whereas some connection-specific details are different, the time-
stamp of the ICMP packet is the same in both captures. So, the capture
processes create two files with the same network information encap-
sulated in different layers. For the further processing of the data, we
performed some data sanitization for the per-packet analysis. To re-
move irrelevant packets, we removed all ARP packets from the capture
files due to the fact that these do not contain any relevant information.

To create some anomalies, we injected some crafted network pack-
ets, which use illegal combinations of network headers. For creating
those packets, we used scapy,* a python framework for the creation,
manipulation and capturing of network packets. The packets were
designed with the following variations (alone and in combination).

» Irregular value of IP version (set to 5)

» Random IP protocol number

» Unusual combination of TCP flags (RST, ACK, FIN) / (SYN, PSH,
RST)

» Unused IP addresses

We injected these packets into the network using tcpreplay, so that
they are recorded during the capture process.

The use of the crafted network packets provides a simplified imple-
mentation of the possible changes as mentioned in Section 3.2. Table 1
shows the implementation details, which are used to create a specific
event to produce a change inside the network.

3 https://www.alexa.com/topsites.
4 www.scapy.net.
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Table 1

Implementation of events.
Occurrence Event Implementation
Overlay Internal IP addressing scheme Adaptation inside the VM
Overlay VM life cycle Via web interface
Overlay Addition or deletion of VMs Crafted network packet
Underlay Migration Via web interface
Underlay Change of the protocol Adaptation of overlay protocol
Underlay SDN programmability Adaptation of overlay protocol

4.2. Feature set

The definition of the correct features to train the ML algorithms
heavily depends on the goal of the analysis. So, the selection of sig-
nificant parameters which differ benign from malicious traffic is still
a difficult process, which depends on various parameters and aspects
of the network. Different research uses feature extraction algorithms
based on the network traffic to define a usable feature set. [47] describe
the feature selection with the help of the Poisson Moving Average
(PMA), [48] describes the use of Linear Discriminant Analysis (LDA)
and Principal Component Analysis (PCA). But the use of these algo-
rithms might have some drawbacks, especially the small size of the data
set might result in an insufficient data set. Because of this, we focus on
a manual selection of features to be used.

The information used in the feature set is variable, and might
contain various information like packet details of the different lay-
ers, results of deep packet inspection [49] and time or flow-specific
values [50].

The use of network flows improves the results and the time needed
for the analyses by limiting the amount of information used for the
algorithm. A flow is a group of packets with common protocol details
like IP addresses or port numbers. So, a flow does not contain any
application data, thus this limits the traffic that has to be analyzed
in contrast to a per-packet analysis [51]. Common analysis based on
network flows use the following five fields [52]:

* Source IP address

+ Destination IP address

» Source port number

» Destination port number
« Layer 3 protocol type

In contrast to this, [53] add statistical parameters to the feature set.
Especially the number of transmitted bytes are considered as relevant.
We use a mostly predefined communication scheme, so the amount of
traffic is static to align the different scenarios. Timing parameters are
relevant in productive networks, but our test bed is based on a internal
LAN, so timing parameters like duration of the flow or delta between
packets are negligible. Because of this, we focus on the use of packet
details.

In [54] a first feature set of 23 parameters is considered to detect
DDoS attacks. After measuring the importance a set of eight parameters
were defined as necessary. In contrast, [55] uses only four features
consisting only of the parameters source and destination IP address and
combinations of them. Advanced attacks like covert channels do not
only use application protocols like HTTP or DNS, but implement their
information in lower level protocols like IP or TCP.

So, all aspects of Ethernet, IP and TCP/UDP as well as generic
values like the length of the frame are relevant. These changes cover
modifications on the underlay network, while changes inside the virtual
networks typically concern changes of the IP addresses used. The use
of length parameters of the protocols like frame.len and ip.len is useful
for the detection of various covert channels as discussed in [56]. So,
there is no defined list of relevant protocol fields to be used for anomaly
detection in network forensic investigation. In contrast to our research
in [31], we changed the deployed feature set. The first approach was
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» Frame 17: 98 bytes on wire (784 bits), 98 bytes captured (784 bits)
» Ethernet II, Src: 2e:99:39:18:2d:17 (2e:99:39:18:2d:17), Dst: @a:31:b6:b8:a5:bc (@a:31:b6:b8:a5:bc)
» Internet Protocol Version 4, Src: 192.168.1.2, Dst: 192.168.1.1
v Internet Control Message Protocol

Type: 8 (Echo (ping) request)

Code: @

Checksum: @x3f6b [correct]

[Checksum Status: Good]

Identifier (BE): 7414 (0x1cf6)

Identifier (LE): 63004 (@xf6lc)

Sequence number (BE): 107 (0x@06b)

Sequence number (LE): 27392 (@x6b0e)

IResponse frame: 18]

Timestamp from icmp data: Jul 27, 2020 11:38:58.000000000 CEST

[Timestamp from icmp data (relative): 0.417511000 seconds]

» Data (48 bytes)
Fig. 4. Packet without VXLAN encapsulation.

» Frame 34097: 148 bytes on wire (1184 bits), 148 bytes captured (1184 bits)
» Ethernet II, Src: Apple_b@:6d:4c (9c:f3:87:b0:6d:4c), Dst: Vmware_5b:cd:71 (0@:@c:29:5b:cd:71)
» Internet Protocol Version 4, Src: 192.168.10.157, Dst: 192.168.10.215
» User Datagram Protocol, Src Port: 41394, Dst Port: 4789
» Virtual eXtensible Local Area Network
» Ethernet II, Src: 2e:99:39:18:2d:17 (2e:99:39:18:2d:17), Dst: @a:31:b6:b8:a5:bc (0a:31:b6:b8:a5:bc)
» Internet Protocol Version 4, Src: 192.168.1.2, Dst: 192.168.1.1
v Internet Control Message Protocol

Type: 8 (Echo (ping) request)

Code: @

Checksum: @x3féb [correct]

[Checksum Status: Good]

Identifier (BE): 7414 (0x1cf6)
Identifier (LE): 63004 (0xf6lc)
Sequence number (BE): 107 (0x@06b)
Sequence number (LE): 27392 (@x6b0@)
[Response frame: 34098]

Timestamp from icmp data: Jul 27, 2020 11:38:58.000000000 CEST
[Timestamp from icmp data (relative): 0.417351000 seconds]

» Data (48 bytes)

Fig. 5. Packet with VXLAN encapsulation.

Table 2

Deployed feature set.
Feature Layer Description
frame.len - Length of the entire frame
eth.src 2 MAC address of the source
eth.dst 2 MAC address of the destination
eth.type 2 Protocol ID of the upper layer
ip.version 3 Version (4 or 6) of the IP packet
ip.len 3 Length of the IP packet
ip.flags 3 Flags of the IP protocol header
ip.fragment 3 Fragmentation of the packet
ip.dst 3 IP address of the destination
ip.src 3 IP address of the source
ip.proto 3 Protocol ID of the upper layer
ip.tos 3 Type of service
udp.srcport 4 Destination port of the UDP datagram
udp.dstport 4 Source port of the UDP datagram
tep.sreport 4 Destination port of the TCP datagram
tep.dstport 4 Source port of the TCP datagram
tep.flags 4 Flags of the TCP datagram
tep.urgent_pointer 4 Urgent flag of the TCP datagram

reduced to application information related to the used ICMP protocol.
The analyses in this research focus more on a realistic environment,
so we need to adapt the used features. Similar to our first analysis our
network bases on an internal LAN without any effects from external
networks like packet loss, changing transmission times or different
routes between the involved hosts, so all timing parameters as well as
the Time-to-live of the packets were discarded. Table 2 lists our feature
set, the name of the feature derives from the display-filter name used
by Wireshark.

We implement a packet-based anomaly detection in contrast to a
flow-based approach due to the fact that we want to measure the impact

of small changes in the network. A reconstruction of the flows in a vir-
tual network requires the focus on the traffic inside the tenant network,
otherwise the UDP-based encapsulation of the VXLAN protocol led to
similar flows, which might irritate the algorithms.

4.3. Outlier detection

Anomaly detection with ML is part of supervised learning and can
be done by a classification of the different values [57]. The algorithms
use different methods to calculate the anomaly score of the different
changes. Common algorithms are Decision Trees, Support Vector Machine,
k-nearest Neighbors (k-NN) and probabilistic methods [14,58]. The detec-
tion of outliers in network traffic can be performed in two different
ways.

» The first step to detect outliers in network traffic is the definition
of normal or benign traffic and later the comparison of the net-
work data to this baseline of the data. k-NN algorithms implement
this kind of calculation by computing a local density deviation of
a given data point with respect to its neighbors. An outlier has a
lower density than its neighbors. LocalOutlierFactor (LOF) [59]
is an algorithm which uses this density.

Algorithms like IsolationForest (IF) [60] define anomalies as

... few and different’, which make them more susceptible to isola-
tion than normal points.

. Instead of trying to build a model of normal instances, it ex-
plicitly isolates anomalous points in the data set. IF algorithms as
a branch of Random Forests detect outliers by randomly selecting
features and isolating them by a value between the minimum and
the maximum values of this feature.
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Table 3
Packet count for each scenario.

Occurrence No. of packets

Before change After change Overall
Internal IP addressing 5,612 4,699 10,311
VM life cycle 6,897 6,302 13,199
Addition or deletion of VM 4918 5,523 10,441
Change of overlay protocol 6,494 6,392 12,886
Migration 6,883 7,318 14,201
SDN-programmability 8,893 8,022 16,915

5. Evaluation

To evaluate our results, we used capture files produced by the data
collection phase. The number of packets in each scenario is listed in
Table 3.

We use the IsolationForest-algorithm of the scikit-learn-framework,>
which provides the function IsolationForest.predict() as an indicator
whether a packet is classified as an anomaly or as a normal behavior.
This value marks an anomaly with the score of -1 and a normal
behavior with 1.

As an application of the first approach, we implement LOF, which
calculates a value of 1 if it is a normal behavior, and a value be-
tween 1.2 and 2.0 if it is an anomaly. sklearn provides LocalOutlier-
Factor.negative outlier. factor. as an indicator for the outlier detection.
IF and LOF are unsupervised algorithms, so we do not need any
training data, and each packet of each capture file was analyzed by
IsolationForest.predict() and LocalOutlierFactor.negative_outlier factor.. In
addition to this, we focus on a detection of changes in the network
and their identification as an anomaly. The impact of changes in a
virtual network and the detection as an anomaly as a result of such
a change is the main part of this evaluation, therefore we did not focus
on the improvement of the detection algorithms and did not evaluate
the correct classification of every network packet.

To validate the detection, we repeated the research of [31], and
analyzed the detection of outliers based on the ICMP messages without
any overlay protocols. Both algorithms, IF shown in Fig. 6 as well as
LOF shown in Fig. 7, detect the ICMP messages successfully as outliers,
which validates our implementation. Fig. 6 shows the result of the
IsolationForest.predict(), the bar around —0,2 defines the existence of
abnormal packets. Fig. 7 defines the existence of abnormal packets
with a red circle, which marks values that have a lower density than
their neighbors. The x-axis represents the network packets based on its
values, and the y-axis defines a value of anomaly based on the density.
The radius r of the red circle is the outlier score calculated by LOF. The
calculation is done with

_ (LOF_Scores.max() — LOF_Scores)
- (LOF_Scores.max() — LOF _Scores.min())

IF provides two scores to classify a value as an anomaly. By using
the IsolationForest.predict()-function, IF marks an anomaly as -1. The
use of IsolationForest.score_sample results in a negative value. The larger
the absolute value, the more abnormal is the value. The analysis of the
ICMP packets shows an anomaly score of -0.59377377, which defines
an abnormal network packet. As the value is not close to —1, it might
be an indicator that this network traffic is not easily detected as an
anomaly.

LOF calculates anomalies with a score of -1 when using LocalOut-
lierFactor.negative_outlier. factor. [61], thus the network packets with the
IP protocol number of 1 (which defines ICMP packets) are marked as
an anomaly. The ICMP packets are marked with -1, whereas the TCP
datagrams as the layer 4 protocol are marked as normal packets with
a value of 1.

5 Details can be found at: https://scikit-learn.org/stable/.
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Both algorithms detect the anomalies in our data set correctly. In
addition to this, the crafted network packets were successfully identi-
fied as an anomaly by both algorithms, too. Therefore, we focus on the
use of IF and the resulting graphs for the next steps.

The next step was the analysis of the data with overlay protocols,
but without any changes in the structure as discussed in Section 3.2.
Both techniques successfully detect the ICMP packets and the crafted
packets as an anomaly, both with small changes to the aforementioned
analysis, shown in Fig. 8 (the bars around —0.2 — —0.15 define the
existence of abnormal packets) and Fig. 9.

The next experiments analyze the different changes as discussed in
Section 3.2.

* VM migration

Due to the fact that OpenStack does not support any kind of live
migration, we created a snapshot of the VM and restarted the
frozen VM on another host. There were no detectable changes
in the overlay network, but the underlay network creates a new
VXLAN tunnel, whereby a new virtual tunnel endpoint (VTEP) is
created. This new VTEP acts as an additional system appearing
in the network capture of the underlay network. This results in a
small impact on the lower values shown in Fig. 10. As described
for Fig. 6, bars at lower values define the existence of anomalous
packets.

The injection of the crafted network packets has a smaller impact
of the detection as shown in Fig. 11, because some of the values
in these network packets intentionally collide with the effects of
the additional system. Especially the additional IP addresses used
by the crafted packets might irritate the algorithm.
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VM Life Cycle

The life-cycle of a VM changes the internal structure of the virtual
customer network. Even when a VM is stopping or rebooting,
internal identifiers like the IP address or MAC address are still
the same. The only necessary adaptation is done in the overlay
network, when the VM is connected again to the network. In this
case, the network traffic is similar to the traffic related to VM
migration. Due to the fact that a VM after a shutdown or reboot
might appear as the same device concerning the IP address and
MAC address, there is no detectable impact of this process.
Addition or Deletion of VMs

In contrast to the VM life cycle, the starting or permanent deletion
of a VM results in a change within the network. A deletion might
lead to a change in the mapping between MAC address and
IP address; if another VM is started this system might get the
previously assigned IP address. This process is similar to the VM
migration, because the location of the new VM is randomly in the
network. In detail, there are some different aspects compared to
the VM migration process, which affect different parameters of
the communication. For example, a new location of a migrated
VM might result in changed network details like timing parame-
ters or traffic volume. But these values are not detectable by our
packet-based approach.

14000

12000
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Fig. 11. Additional VTEP and crafted network packets.

Change of the protocol

To simulate the change of the deployed overlay protocol, we
changed from VXLAN to GENEVE during the packet transmission
on the fly. As shown in [31], such a change has a measurable
impact on anomaly detection. The result is again a detection of
anomalies in the underlay network, shown in Fig. 12. To clarify
the anomaly, Fig. 13 shows the detection of anomalies when
the protocol is changed back from GENEVE to VXLAN on the
fly. The different heights of the bars might emerge from the
processing of IF, which uses different values for the beginning of
the calculation.

SDN-programmability

The programmability of the network based on SDN provides a
huge flexibility of the network. As a result of a new programming
of the network, flows inside the network might be redirected,
reconfigured or replaced with other packets. To evaluate the
SDN functionality, we implement a simple configuration change,
which redirects the traffic originally sent to the web server to an
additional web server, which acts as a simple proxy system. This
alters the network traffic, but the arising changes are the same
as VM addition or deletion, e.g. a new system is available in the
network.

Different scenarios as discussed in Section 3.2 might appear in
virtual environments and on different layers of the network, but the
impact on the process of anomaly detection is sometimes similar.
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Especially all processes that create additional systems (VMs as well as
VTEPs) have a similar impact on the ML algorithms. As we focus on
the detection of anomalies, we did not calculate any further metrics
like precision, recall and F-measure, which are typically used in the
evaluation of machine learning algorithms [62,63].

All changes in virtual networks result in a modification of the envi-
ronment. So, an occurring change is, depending on the intended anal-
ysis, detected as an anomaly which demands for an adapted method of
anomaly detection. Only this way might eradicate the alleged anoma-
lies and thereby do not hamper the detection of relevant anomalies.

6. Conclusion and future work

Cloud environments are highly used networks and provide a great
flexibility, either for the user as well as for the provider. Modern
networks provide various virtualization techniques to create a highly
flexible and dynamic environment. Whereas this customizability creates
benefit for the administrator or the user, IT security processes are
hampered when using ML. These ML processes require a valid data set
used for training the ML algorithms, but this is not guaranteed in mod-
ern networks. The appearance of various changes in the environment
might lead to different effects like false positives or false negatives.
Changes like VM migration or user customization cover other issues
in the network and endanger the detection of real anomalies.

Computer Networks 192 (2021) 108017

This paper analyzes unsupervised packet-based anomaly detection
with two different algorithms. IsolationForest as well as LocalOut-
lierFactor detect arising changes in the network and are therefore
a suitable technique to detect outliers in highly used networks. We
defined possible changes on two different layers of the virtual envi-
ronment and evaluated the algorithms in a realistic scenario based on
an OpenStack cloud.

Changes in this network are relevant and might occur quite often.
As shown in Section 5, these benign changes are detected as anomalies
and therefore impede the detection of real attacks or anomalies in the
network. To cover this problem, the provider needs to adapt its imple-
mented algorithms and focus on the possible changes. As the changes
might occur on all levels of the OSI model, a limitation to specific
parameters is not usable. Thus, a periodic redefinition or sanitization
of the network traffic is necessary to overcome these issues.

Our future work will be focused on the analysis of large packet
captures like UNSW-NB15 [64] in virtual environments and the com-
parison of packet-based and flow-based feature sets. Modern networks
provide high speed connections, therefore a real time packet-based
anomaly detection has to be fast enough, to capture and analyze
each network packet in time. In our scenario, the network speed was
1 gigabit per second, but the network traffic was limited to only a
few involved systems. In addition to this, we firstly captured the data
in the so-called online phase, and analyzed this data in a subsequent
offline phase. By this, the performance of the analyzing system is not
relevant for the intended process. We will improve the analyzing part
of the approach by further investigations to filter the network traffic
and analyze only relevant information. Furthermore, as a simulated
scenario, our approach is not protected against any model of adversarial
attacks, so we will harden future implementation against attacks like
evasion or poisoning.
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